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Abstract

Purpose – The objective of the research work is to predict the volume of fluid drained from a
cylindrical vessel without entrapping air through the drainpipe, and hence predict the location of the
free surface of the liquid in the vessel.

Design/methodology/approach – A two-dimensional axi-symmetric numerical simulation has
been made using a finite volume method that employs unstructured grids with cell-wise local
refinement and an interface capturing scheme to predict the shape of the free surface of water in a
cylindrical vessel, thus simulating the entrapment of air in the drainpipe connected to the vessel.

Findings – A drain cover was placed on top of the drainpipe to delay the entry of air into the
drainpipe. It was found that an increase in the diameter of the drain cover increases the amount of
liquid to be drained out before the air could enter into the drainpipe. It was found that air enters the
drainpipe at a particular height of the liquid in the vessel. However, when an initial rotational velocity
was imparted to the liquid, the height of liquid when air enters the drainpipe depends on the initial
bath height. As the initial bath height increases, air enters the drainpipe at a progressively higher bath
height. But surprisingly when the drain cover is put in place the initial bath height, again, has no effect
on the height of the liquid (in the vessel).

Practical implications – The outcome of the present research work has direct implications for
steel making. If the drainpipe can be connected to the ladle the way it has been discussed in this
paper then more steel can be drained before stopping the drainage in order to avoid air or slag
entrapment.

Originality/value – The idea of putting a drain cover, using a larger diameter drainpipe and making
the drainpipe connection to the vessel different so as to delay the appearance of air at the drainpipe is a
new finding and the idea can be used by steel makers.
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Nomenclature

c ¼ volume fraction of the fluid
d ¼ diameter of the drainpipe
g ¼ acceleration due to gravity

Hcr ¼ height of the free surface just entering
the drainpipe

p ¼ pressure
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Introduction
Drainage of liquid steel from a ladle into the tundish is a critical operation in the steel
plant, because, while the liquid is being drained it must be ensured that it does not
entrap the slag along with it. Normally, slag remains on the top of the liquid steel
because it is lighter compared to the steel. When the liquid is being drained, the free
surface of the liquid deforms just above the outlet. The deformation goes on increasing
with time and finally, the free surface enters the drainpipe where it subsequently
breaks into two parts. When the free surface enters the drainpipe, the liquid on top of
the free surface also enters the drainpipe and that finally gets discharged into the
tundish, which is not a desirable phenomenon because the liquid sitting on the free
surface of steel is slag. In the simulation, the liquid on top of the free surface is air and
we are conducting the numerical simulation of the free surface of water to find out
when air enters the drainpipe. When the free surface enters the drainpipe, the drainage
can be manually stopped so that slag cannot enter the tundish through the drainpipe.
Here we look for air entrapment into the drainpipe as the occasion when drainage can
be stopped.

The objective is to maximize the drainage without the entrapment of air bubble.
So we look for some new design, which can achieve it. Normally, the entrapment of air
occurs at the centre of the drainpipe. So it is planned to cover the centre of the drainpipe
and allow the liquid to flow from the side towards the drainpipe, so that air entrapment
can be delayed. The drain cover arrangement is shown in Figure 1. In the actual case
when the ladle is carried to the caster the liquid inherently gets some initial motion.
If the drainage starts immediately then the vortex starts quickly which entraps slag
and carry that into the outlet of the drainpipe. It is believed that such an arrangement
can stop the early appearance of vortex and the quality of casting can be improved due
to the absence of slag.

Dubke and Schwerdtfeger (1990) have studied the effect of a stopper rod on the
formation of a vortex and an air core in the nozzle (outlet pipe) with cold models using
water and mercury as liquids. It was found that in the presence of a stopper rod, the air
core develops from below whereas it forms from the surface in the absence of a stopper
rod. Surface oscillations were found due to the presence of the stopper rod. In this case,
the vortex was found to be detached from the stopper rod and was spinning around it.
The frequency of the wave was predicted from the wave theory.

Steffen (1987) carried out model trials from 1:10 to 1:1 scale and plant trials to clarify
the influences of the flow phenomena such as “vortex sink” and “drain sink” on slag
carryover. Hammerschmid et al. (1984) carried out water model study with water and
mercury and confirmed that the vortex formation during draining depends strongly on
the state of initial rotation in the container. Experiments carried out showed that vortex
formation could be suppressed effectively by placing obstacles near the nozzles.

r ¼ radial coordinate
t ¼ time
v ¼ velocity
z ¼ axial coordinate
r ¼ density of the fluid
m ¼ co-efficient of viscosity
n ¼ kinematic viscosity
s ¼ surface tension coefficient

Subscripts
r ¼ radial coordinate
z ¼ axial coordinate
1 ¼ fluid 1 (liquid)
2 ¼ fluid 2 (gas)
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They had used modified outlets, fixed or floating disks and balls over the outlet pipe
(where it was connected to the main tank) and have concluded that all these fittings
have almost no influence on vortex formation.

Baker (1992) experimented with a number of anti-vortexing devices in ladles to
brake up the slag vortexing from the ladle to tundish. But none of the devices produced
any encouraging result.

Experiments have been carried out by Sankaranarayanan and Guthrie (1992) to
elucidate the parameters that influence the critical limiting height below which a
vortexing funnel and draining funnel are formed during ladle teeming operations.
They have studied the dependence of vortexing and draining funnel on factors
such as vessel and nozzle dimensions, nozzle location, physical properties of the
primary liquid and supernatant fluid, residual tangential velocities, etc.

However, the effect of the drain cover and its size on the appearance of the vortex
has not been analysed by earlier researchers. So we intend to steer the present work in
this direction.

Problem description
Figure 1 shows a cylindrical vessel of radius 60 mm with a drainpipe of radius 6 mm
connected to it at the centre. The vessel is initially filled to a height of 20 mm. The drain
plug is opened and liquid from the vessel flows out through the drainpipe due to the
effect of gravity. The objective is to capture the free surface of the liquid (water for this
case) when it just enters the drainpipe. Then it is planned to put drain covers of
different radii and see their effect on the free surface and the appearance of the air

Figure 1.
A schematic view of the
draining system of a ladle
(all dimensions in mm)
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bubble at the inlet to the drainpipe. It is also planned to see the effect of initial bath
height and initial disturbances of the liquid on the free surface. Initial disturbances
(initial flow field) those occur in real life cannot be simulated numerically because no
one knows what is the initial velocity field that has been acquired by the fluid due to
the disturbances. But it has been seen experimentally that vortex starts quickly if there
are initial disturbances in the liquid in the form of initial velocity either small or large.
If the initial disturbance is small then vortex starts late compared to a case of higher
initial disturbances. So it is thought that the initial disturbances can be simulated by
specifying a small angular velocity to the fluid at time t ¼ 0, and then start the
computation till the free surface enters the drainpipe while the wall is at rest always
during the computation. Normally, the initial disturbances that is present in the fluid in
terms of its local velocity gets converted to angular velocity and the angular velocity
increases towards the centre of the drainpipe causing an early vortex to appear at the
centre. It is thought that the drain cover will effectively cut down the transformation of
initial velocity to angular motion and will help to delay the appearance of vortex at the
drainpipe.

Governing equations
The finite volume method for incompressible viscous flows with free surface is
described in detail in Muzaferija and Peric (1999); here we describe it only briefly.
The starting point are the conservation equations for mass, momentum, and scalar
quantities (e.g. energy or chemical species) in their differential form.

Continuity:

›vr

›r
þ

vr

r
þ

›vz

›z
¼ 0 ð1Þ

Momentum
In radial direction: r

r
Dvr

Dt

� �
¼ 2

›p

›r
þ m 72vr 2

vr

r 2

� �
þ Fsi ð2Þ
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r
Dvz
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� �
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›2
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þ

1

r

›
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þ

›2

›z 2
;

D

Dt

� �
¼

›

›t
þ ðU ·7ÞU and U ¼ vri þ vzk

A single momentum equation (equations (2) and (3)) is solved throughout the domain,
and the resulting velocity field is shared among the phases. Laminar solution is desired
for the present study because the geometrical dimensions are small enough to cut off
any turbulence. The momentum equation, shown in equations (2) and (3), is dependent
on the volume fractions of all phases through the properties r and m.
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Surface tension and interface capturing
Interface-capturing method and HRIC (high-resolution interface capturing) scheme of
Muzaferija and Peric (1999) have been used to simulate the free-surface effects. In
addition to the conservation equations for mass and momentum, a transport equation
for void fraction of the liquid phase c has been introduced:

›c

›t
þ U ·7c ¼ 0 ð4Þ

The grid extends to both liquid and gas phase; the void fraction c is set equal to 1 for
CVs filled by liquid and 0 for CVs filled by gas. Both fluids are treated as a single
effective fluid whose properties vary in space according to the volume fraction of each
phase, i.e.

r ¼ r1cþ r2ð1 2 cÞ; m ¼ m1cþ m2ð1 2 cÞ ð5Þ

where subscripts 1 and 2 denote the two fluids (e.g. liquid and gas).
The effects of surface tension at the interface between two fluids are taken into

account through a body force as a function of the volume fraction c, which is achieved
by introducing the continuum surface force (CSF) model (Brackbill et al., 1992). The
CSF model uses the smoothed field of c to define a unit vector normal to the interface
with the help of the gradient vector of c; the divergence of this unit vector defines the
curvature of the interface, k. The surface tension force per unit volume (F in equations
(2) and (3)) and the curvature can thus be expressed as:

Fs ¼ s
rk7c

1
2 ðr1 þ r2Þ

k ¼ 27 ·
7c

j7cj

� �
ð6Þ

where s is the surface tension coefficient and r the volume averaged density computed
from equation (5). Equation (6) shows that the surface tension source term for a cell is
proportional to the average density in the cell.

Air bubble model
When a bubble is entrapped in the liquid it experiences three kinds of forces on it apart
from its own weight. One is the surface tension force at the interface, the second one is
the viscous force on the surface as well as everywhere inside the bubble and the third is
the surrounding pressure force on it. Due to incorporation of a continuum surface force
model as per equations (2) and (3), we take care of the viscous force and the surface
tension force acting on any cell at any moment. The pressure gradient force is always
present as it is imbedded in the momentum equations (2) and (3). So inherently the
momentum equation has all the required components in it to describe the bubble
dynamics when we incorporate a continuum surface force model. So separate equations
describing bubble physics and its movement is not required as it is already imbedded
in equations (2) and (3). The entrapment of a bubble is activated when the surface
overturns and intersects itself entrapping the surrounding air into the liquid. No
separate activation mechanism is required in the numerical model as the velocity field
is computed for a single fluid with varying local properties. If a bubble is present then
the cells will have a value of c ¼ 0 and the boundary of the bubble will have a value of c
lying between 0 and 1 and the physical properties of the local fluid will be computed
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according to equation (5) for all those cells having a value of c between 0 and 1. Velocity
is computed everywhere and the velocity of the interface is also computed time to time.
So the movement of the interface or the bubble can be tracked with time. The present
model can therefore describe the entrapment of air bubble in the liquid and its
movement in the liquid as well its coalesces or fragmentation. The use of the model to
predict the movement of air bubble, its coalescence and fragmentation has been shown
in the work of Dash et al. (2004).

Boundary conditions
The set of differential equations (1)-(3) have been solved with a set of realistic boundary
conditions. The top surface of the cylinder opened to the atmosphere is given a
pressure boundary condition where the pressure was set to one atmosphere. The back
flow volume fraction of air was set to 1 on this boundary. The outlet was given a zero
gradient condition for all the variables except for the velocity components, which were
computed from the pressure boundary condition of zero pressure. The back flow
volume fraction for air was also kept to be 1 on this boundary. At the symmetry plane,
zero gradient conditions in a direction normal to the symmetry plane for all the
variables were used. At the wall zero gradient condition for the volume fraction, c has
been used because the quantity c, cannot diffuse into the wall. With all these set of
boundary conditions one initial condition for all the variables are needed to start the
solution.

Initial condition
At time t ¼ 0, all velocity components were set to 0. But for the case of rotating
cylinder the fluid was set to u ¼ 2vr sin u; v ¼ vr cos u everywhere, while the walls
were kept at zero velocity. The volume fraction, c, was set to zero in the air and set to 1
in water. For the steel slag and air case, appropriate volume fraction was set to describe
the initial location of all the three fluids while steel was described to be the primary
fluid for which the volume fraction equation was not solved (because volume fraction
of air and slag will predict the volume fraction of steel at any point).

Properties of the fluids used in the simulation
The physical properties of the fluids used in the numerical simulation are given in
Table I.

Numerical solution methodology
The solution domain is subdivided into a finite number of non-overlapping control
volumes (CVs); in the centre of each CV lies the computational point at which the
known quantities are specified and the unknown variables are to be computed. Local
refinement was used to achieve finer resolution in regions of rapid change of the

Property Water Steel Slag Air

r (kg/m3) 988.3 7100 – 1.225

s (N/m) 0.073 (air-water)
1.28 (air-steel)

1.11 (slag–steel) 0.25 (air-slag) –
m (Pa S) 0.001013 0.006482 0.129 1.8£ 1025

Table I.
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variables, as shown in Figure 2. The CVs are treated as polyhedra and can have an
arbitrary number of neighbours (unstructured grids).

Equations (1)-(3) are applied to each CV and then discretised, leading to one
algebraic equation per CV in which variables from immediate neighbours also feature.
All integrals are approximated using midpoint rule, i.e. the function to be integrated is
evaluated at the centre of the integration domain and multiplied by the area, volume or

Figure 2.
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time interval over which the integration takes place. In order to evaluate the function at
the centre of the integration domain, one needs to introduce further approximations:
interpolation and differentiation. In space, linear interpolation is used, while in time
either linear or quadratic shape functions are used. The diffusive fluxes require that the
derivatives in the direction normal to CV faces be computed at each cell-face centre;
these are obtained from linear shape functions with the help of least-squares method or
Gauss-theorem. The integration in time is fully implicit (first-order Euler implicit
method). The spatial integration is also of either first- or second-order, depending on
the approximation of convected variable in convective fluxes (upwind or central
differencing, or a blend of the two). In the present computation, first-order upwinding
scheme was adopted for the convective fluxes with a blending factor of 0.5. In order to
keep the computational molecule limited to cell centre node and centres of nearest
neighbour cells, deferred-correction approach is used: low-order approximations which
use only nearest neighbours are used to construct the coefficient matrix, and the
difference between the desired approximation and the low-order one is computed
explicitly from the values obtained in the previous iteration and added to the source
term on the right-hand side of the equation. More details on individual steps in the
discretisation procedure can be found in Muzaferija and Peric (1999).

In order to calculate the pressure field and to couple it properly to the velocity field,
a pressure-correction method of SIMPLE-type (Patankar and Spalding, 1972) is used.
Velocities computed from momentum equations using pressure from previous iteration
step are corrected to enforce mass conservation, and the correction to cell-face velocity
is proportional to the gradient of pressure correction, leading to a Poisson-type
pressure-correction equation. When solving the equation (4), a special interpolation
method is used to compute the cell-face value of the volume fraction c (HRIC-scheme;
Muzaferija and Peric, 1999), which is designed to keep the interface sharp (i.e. avoid
spreading due to numerical diffusion) and to maintain c bounded (i.e. c is not allowed to
become less than zero or greater than unity). This is achieved by blending the upwind
and downwind approximations, with blending factor being a function of the local
profile of c, the orientation of interface relative to cell face, and the local Courant
number. The following equations show how the cell-face value of volume fraction c is
computed at the cell face j according to the HRIC scheme

cj ¼ c**jðcD 2 cUÞ þ cU

where

c**j ¼ c*j
ffiffiffiffiffiffiffiffiffiffiffiffi
cosðuÞ

p
þ cC 1 2

ffiffiffiffiffiffiffiffiffiffiffiffi
cosðuÞ

p� �

and u represents the angle between the normal to the interface (found out by the
gradient vector of c) and the normal to cell face (see Figure 2(d)-(f)).

c*j ¼

�cj if Co , 0

cC þ ð �cj 2 cCÞ
0:72Co
0:720:3 if 0:3 # Co , 0:7

cC if 0:7 # Co

8>><
>>:

where the local Courant number is Co ¼ ðv · nSjdt=dVcÞ (Sj is the surface area at j and
dVC is the volume of the cell C.
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�cj ¼

cC if cC , 0

2cC if 0 # cC # 0:5

1 if 0:5 # cC # 0:5

cC if 1 # cC

8>>>>><
>>>>>:

More details on the method are available in Muzaferija and Peric (1999). It is
implemented in the commercial code Comet[1], which has been used in this study.

Time step used for the integration of the equation was 0.00005 s at the start of the
solution and later on it was slowly increased to 0.0001 s and then decreased to 0.00002 s
when the free surface was about to enter the drainpipe. About 2-3 iterations per time
step was required for a converged solution to be achieved at each time step. The cells at
the drainpipe had a maximum size of 0:25 mm £ 0:25 mm (Figure 2(a)-(c)), which could
capture the interface very sharp. Cell sizes near the outlet of the drainpipe were
0:5 mm £ 0:75 mm: Finer cells are not required at the outlet because the free surface is
not expected to reach there. Cells inside the cylinder are having the same size
ð0:25 mm £ 0:25 mmÞ like that of the cells present at the inlet of the drainpipe. But the
cells present above 20 mm level (measured from the bottom of the cylinder) are kept to
be larger ð0:5 mm £ 0:5 mmÞ because the free surface is also not expected to be present
in that zone (the zone consists of air and when the free surface recedes away, air
immediately fills up the vacant zone). Grid-independency test for the present
computation was done by making the cell size half everywhere in the computational
domain. It was found that there was practically no difference in the location of the free
surface compared with the present cell size for which results are reported here.

Results and discussions
Figure 2 shows the grid arrangement in the computational domain along with the drain
covers of different radii. Initially, water was kept to a level of 20 mm. So the grids
are made finer up to this level so that the free surface can be captured very sharp. In the
drainpipe also, grids are made finer so that the entry of the free surface into it can be
captured well. In the locally refined area, the minimum cell size is 0.25 mm. It must
be marked that the cells are coarser in the upper part of the vessel. Air remains in the
upper part of the vessel and there will be no significant velocity change in that zone, so
finer grids are not required there. As our objective is to capture the free surface when it
just enters the drainpipe and then stop the computation, so there is no need to put finer
grids towards the outlet of the drainpipe also.

Effect of radius of the drain cover
A simulation is done without the drain cover and that is shown in Figure 3(a). It can be
seen from Figure 3(a) that the free surface comes to a height of 9.3 mm near the outer
wall (the millimetre scale can be read near the outer wall) when it has just entered into
the drainpipe. If the draining continues beyond this point then air will be drained out
along with water. From casting point of view such a situation is not desirable and
hence draining has to be stopped at this point in order to keep the metal quality high
otherwise it will be spoiled by the slag entrapment. So when the free surface of water
just enters the drainpipe we stop the computation and evaluate how much of liquid has
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been drained out (volume of fluid drained out in each case is shown in Table I). It is
also the objective that the draining should be as high as possible without the
entrapment of air.

In Figure 3(b), a drain cover of radius 6 mm is put at a height of 10 mm from the
bottom of the vessel. There is 4 mm gap at the outer edge of the drain cover through
which the fluid can come into the drainpipe for its drainage. It can be seen that the free
surface has come down to a level of 6 mm before its entry into the drainpipe. So when a
comparison is made between the case of no-drain cover and drain cover, it can be
concluded that with a drain cover it is possible to drain out more liquid without
entrapping air into it. It can also be seen from Figure 3(c) and (d) that as the radius of
the drain cover increases, more and more liquid can be drained out of the vessel
without the entrapment of air. When the radius of the drain cover is 12 mm, the free
surface remains at a height of 4.1 mm before its entry into the drainpipe and when the
drain cover radius is 18 mm, the free surface level falls to 2.5 mm after which it can
enter the drainpipe.

When there is no drain cover, the fluid gets a straight path into the drainpipe for its
drainage. Near the drainpipe inlet, the velocity of the fluid increases causing the radial
pressure drop to increase. The dimple formed on the free surface grows in size and
finally, the free surface enters the drainpipe causing air to be entrapped in the liquid,
which is being drained out. When there is a drain cover, the fluid cannot enter the
drainpipe vertically down, but it has to come from the side of the drain cover into the
drainpipe. This helps the free surface to arrive late at the drainpipe causing more of
liquid to be drained out and thus the free surface comes to a lower height before it could
enter the drainpipe. As the radius of the drain cover increases, the liquid has to enter
the drain cover from a far off distance, so also the air moving on top of the liquid.
But the air rises up inside the drain cover, which causes the liquid to swell inside the
drain cover. This swelling effect of the liquid delays the entry of air into the drainpipe.
The swelling of the liquid or of the free surface can be seen very clearly in Figure 3(d)
where the drain cover radius is 18 mm. When the drain cover is small in size, the
swelling of free surface does not take place at all. The free surface simply comes into
the drainpipe without swelling any further.

Different arrangement of drainpipe connection
In Figure 3(e) and (f), two new types of drainpipe connections are shown compared to
the cases shown in Figure 3(a)-(d) where the drainpipe is connected to the vessel
without any attachment. In Figure 3(e) the drainpipe is connected to another pipe
having a diameter of 24 mm and a height of 6 mm. All other dimensions remain exactly
the same as in Figure 3(a)-(d) or in Figure 1. In Figure 3(f), the drainpipe is connected to
a frustum shaped pipe having a base diameter of 24 mm (which is connected to the
vessel bottom), top diameter of 12 mm and a height of 6 mm (radius of curvature for the
curve side wall is 6 mm). It can be seen from Figure 3(e) and (f) that these types of
connections are able to draw more fluid before air could enter into the drainpipe. The
geometry in Figure 3(e) can draw as much fluid as the case of a drain cover having a
radius of 12 mm. Whereas, the geometry of Figure 3(f) can draw less fluid compared to
the geometry of Figure 3(e). However, the geometry of Figure 3(f) draws more fluid
compared to the case when the drainpipe was straight connected to the vessel as shown
in Figure 3(a). So such types of drainpipe connections can also help to draw more fluid
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without entrapping air into it and more study on the parametric aspects of the
drainpipe connections can be a scope of the future work.

Drainage of steel in presence of slag and air
Figure 3(g) shows the drainage of steel when there is a top slag layer of 5 mm and the
rest of the domain is filled with air. The initial height of liquid steel is kept to be 20 mm
and the geometry is exactly kept to be the same like that of Figure 3(f) (although the
geometrical dimensions are too small compared to the real life situation for steel
drainage, but a comparison of the numerical simulation for this geometry can be
meaningful with a water and air system). It should be noted here that a numerical
computation for steel drainage in a real life situation, taking the real geometry of the
vessel into account can be highly time consuming and may be in some cases not
possible if particularly a three-dimensional solution is desired. So if one is interested to
compute the height of the free surface at the wall or the amount of steel that has been
drained before slag entrapment then he has to start the computation just prior to slag
entrapment so that the computational time can be kept realistic. However, such a
computation would need the velocity field and the volume fraction field prior to the
start of the computation and this is almost impossible to be provided. The only way to
simulate such a situation is to make to a scaled down model of the real life situation and
perform a computation for that (and later on develop empirical relations from
numerical study) which has been attempted in the present work. It should also be noted
here that due to the small geometrical dimensions considered here the effect of
turbulence has been cut off. If one considers a large geometry then he has to take the
effect of turbulence into account and the time of computation would be much higher.
From the experiment it has been found out (Sankaranarayanan and Guthrie, 1992) that
the height of the draining vortex does not depend on the diameter of the vessel rather
on the diameter of the drainpipe. So it is a good idea to take a small vessel and do the
experiment for the small set up and compare that with a numerical computation.

The initial volume of water in Figure 3(f) and the initial volume of steel in Figure 3(g)
are exactly the same. The amount of water drained before air entrapment is 146.9 cm3

(Figure 3(f)) where as the amount of steel drained before slag entrapment is 140.2 cm3

(Figure 3(g)) (the difference in the volume drained is due to the fact that slag has taken
out some volume from the drainpipe, if one desires to have exactly the same liquid steel
to be drained like Figure 3(f) then he has to allow the free surface to go little more into
the drainpipe). The height of the free surface at the wall for both these cases is exactly
the same (7.8 mm), which corroborates the fact that water can be used in place of steel
and a scaled model can be used to predict the drainage phenomenon. The presence of
slag on the top of steel does not influence the drainage of steel very much as because
the shape of the free surface in both the cases look almost alike. So a numerical
simulation made with water and air may not take the presence of any slag layer into
account yet it can predict the drainage of steel almost accurately including its shape of
the free surface.

Comparison with experiment
Experiments have been done to find out the height of the free surface at the wall when
the free surface at the centre enters the drainpipe. We took exactly the same shape of
the cylinder with a drainpipe attached to it at the centre (exactly like Figure 1) and
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placed the drain cover of different radii such as 6, 12 and 18 mm just above the
drainpipe. Water was filled up to a height of 20 mm and the set up was allowed to settle
down for about 5-6 h before the drain plug was opened. Pictures were taken
continuously while the draining was going on, so a picture could be obtained just at the
point when the free surface entered the drainpipe. Such a picture is shown in Figure 4(a)
with no drain cover, which shows the height of the free surface at the wall to be 9 mm
(as can be read from the millimetre scale attached with the figure). Figure 4(b) and (c)
shows the height of the free surface at the wall when the drain covers of radii 6 and
12 mm are placed over the drainpipe, respectively. An experimental snap shot with a
drain cover of 18 mm radius could not be taken very clearly as the height of the free
surface was extremely low (about 2.5 mm), so such a picture could not be shown here
for comparison. The drained volume of the fluid prior to air to entrapment was also
measured and that is shown in Table II. Table II shows a comparison between the

Figure 4.
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computation and the experimentally obtained height for the free surface at the wall
along with the volume of water drained when the free surface just enters the drainpipe
with and without the drain cover.

Use of empirical relation
In literature there are not any empirical relations available to correlate the height of the
free surface when that enters the drainpipe with drain cover and with initial angular
velocity. However, one relation developed by Harleman et al. (1959) to predict the
height of the free surface when it enters the drainpipe (without the drain cover and
without initial angular velocity being imparted to the fluid) can be used to have a
comparison with the present computation

Q 2

g 1 2
r2

r1

� �
H 5

cr

h i ¼ 6:32K 2 ð7Þ

where Q ¼ Cdðpd
2=4Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2gH cr

p
, and K was determined experimentally to be 0.64 by

Harleman et al. Taking a value of Cd to be 0.85, d ¼ 12 mm for the present
computation, one can get the height of the free surface Hcr to be 9.2 mm from the
empirical equation (7) as compared to the computed value of 9.3 mm from the present
computation. It can be seen from equation (7) that Hcr does not depend on the initial
height of the fluid in the vessel and also on the diameter of the vessel. So numerical
simulations can take smaller vessel size to predict the height of the free surface before
it enters the drainpipe thereby saving on the computational time.

Effect of initial angular velocity
The liquid was filled up to an initial height of 20 mm for all the cases and an initial
angular velocity of 0.5 rad/s was imparted to the fluid, but not to the wall. The wall was
kept stationary always during the computation. The initial velocity is a sort of
acquired disturbance that the fluid has retained in it just before its drainage. Then the
computation was started with this initial condition. It can be seen from Figure 5(a) that

Volume of fluid drained
(cc) Height of free surface at the wall (mm)

Case no. Computation Experiment Computation Experiment

Figure 3(a) (no drain
cover) 123.2 125 9.3 (9.2 mm from equation (7)) 9.0
Figure 3(b) (drain cover
radius ¼ 6 mm) 158.5 150 6 7.0
Figure 3(c) (drain cover
radius ¼ 12 mm) 178.7 170 4.1 5.0
Figure 3(d) (drain cover
radius ¼ 18 mm) 195.1 190 2.5 2.8
Figure 3(e) (no drain
cover, stepped drain
pipe) 176 – 4.67 –
Figure 3(f) (no drain
cover, frustum shaped
drain pipe) 146.9 – 7.8 –

Table II.
Volume of fluid drained

and height of free surface
at the wall when the free

surface enters the
drainpipe: a comparison

between computation and
experiment

Effect of drain
cover on

entrapment of air
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the free surface entered the drainpipe when it is at a height of 14.4 mm near the outer
wall. A comparison with the previous case (no initial angular velocity) shows that the
free surface has entered the drainpipe much early in the presence of an initial angular
velocity of 0.5 rad/s which is considered to be very low.

Figure 5(b)-(d) show the effect of the radius of the drain cover on the free surface.
It can be seen that as the radius of the drain cover increases, the height of the free
surface near the outer wall decreases before the free surface could enter the drainpipe.
Hence, with the presence of the drain cover it is possible to draw more fluid without
entrapping air into it. It should be marked from Table III that with the drain cover in
place and with initial angular velocity being imparted to the fluid, it is possible to draw
almost the same amount of liquid (without entrapping air into it) compared to the case
having no initial angular velocity being imparted to the fluid. So the initial
disturbances in the form of an initial angular velocity are cut off very effectively due to
the presence of the drain cover.

From Table III, a comparison of the height of the free surface near the vessel wall can
be read when the free surface is just entering the drainpipe with and without the presence
of initial angular velocity. Without the drain cover, the free surface enters the drainpipe
much early with the presence of initial angular velocity. But in the presence of a drain
cover and initial angular velocity, the free surface enters the drainpipe at a marginally
higher height compared to a case of no initial angular velocity only for the case with a

Figure 5.
Effect of initial angular
velocity (0.5 rad/s) on the
free surface of water
entering the drainpipe
under a drain cover of
radius: (a) 0 mm; (b) 6 mm;
(c) 12 mm; and (d) 18 mm
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drain cover of 6 mm radius. But when the drain cover radius increases the height of the
free surface at the vessel wall decreases, with the increase of the initial angular velocity
(for the case of 12 mm drain cover) just when the free surface is entering into the
drainpipe. For the drain cover of 18 mm radius, the free surface at the wall remains
constant with an initial v of 0.5 rad/s, but when the initial v is increased to 1 rad/s, the
height of the free surface at the vessel wall again marginally falls to a height of 2.3 mm.

Thus, the drain cover has effectively cut down the effect of the initial angular
velocity on the arrival of the free surface at the inlet of the drainpipe. Thus, it can be
presumed that any disturbance that has been acquired by the fluid in the vessel during
its transportation can be effectively cut down by a drain cover and the influence of the
disturbances on the amount of liquid to be drained without the entrapment of air can be
very much negligible in the presence of a drain cover.

It should be marked from Figure 5(c) and (d) that the free surface swells inside the
drain cover before it enters the drainpipe. Under a drain cover of radius 12 mm and
without the presence of initial angular velocity there was almost no swelling of the free
surface (see Figure 3(c)), but in the presence of initial angular velocity the free surface
has swollen considerably under the drain cover (see Figure 5(c)). It can be marked from
Figure 6(c) and (d) that the swelling of the free surface under the drain cover (of 12 and
18 mm radius) is considerably high compared to a case of lower initial angular velocity

Figure 6.
Free surface of water just
entering the drainpipe,
initial v ¼ 1.0 rad/s, drain
cover radius for: (a) 0 mm;
(b) 6 mm; (c) 12 mm; and
(d) 18 mm
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(Figure 5(c) and (d)). Due to this swelling effect, the arrival of the free surface at the
drainpipe is delayed and more liquid by that time has been drained out causing the
level of the free surface at the vessel wall to fall compared to a case of low initial
angular velocity where the swelling is low under the drain cover.

Effect of initial bath height
Without initial angular velocity. The vessel was filled up to a particular height at the
beginning (20 mm) and the computation was carried on for the drainage.
The computation was stopped when the free surface of water just entered into the
drainpipe. To see the effect of initial bath height on the free surface of water when it
just enters the drainpipe, another set of computations were carried out at a higher
initial bath height (40 mm) for all the cases of drain cover. It was found that the free
surface enters the drainpipe exactly at the same height as it was doing for an initial
bath height of 20 mm. So it can be concluded that the initial bath height has no effect on
the free surface as far as its arrival at the drainpipe is concerned.

With initial angular velocity. However, with the presence of an initial angular
velocity the case is much different and interesting. When the drain cover is not present,
the initial bath height influences the arrival of the free surface at the drainpipe when an
initial angular velocity was imparted to the fluid. With the increase of the initial bath
height, (hi), the arrival of the free surface at the drainpipe (onset of air entrainment) was
occurring at increased height of the free surface at the wall (ha). Figure 7(a) shows the
effect of initial bath height, hi on ha (the height of free surface at the wall) when the free
surface arrives at the drainpipe with an initial angular velocity of 0.5 rad/s. It can be
seen that ha increases sharply with the increase of hi. After a value of hi ¼ 30 mm; the
increase of ha becomes almost linear with hi. Figure 7(b) shows the experimental snap
shot when the free surface just enters the drainpipe. This experiment was conducted
with an initial angular velocity of v ¼ 0:5 rad=s with no drain cover having an initial
height of water to be 125 mm in the vessel. From the experimental snap shot it can be
seen that the height of the free surface at the vessel wall is 35 mm when air enters the
drainpipe and the same can be read from Figure 7(a). Figure 7(a) shows a comparison
of the height of the free surface at the vessel wall between the present computation
and the experiment along with the volume of fluid drained. The comparison seems
to be quite satisfactory except at lower initial bath height where some deviation
from the experimental measurement can be seen, although the deviation is not too
large.

When the drain cover is present the initial bath height does not influence ha

anymore. ha remains constant even if the initial bath height increases along with the
presence of a constant initial angular velocity.

Figure 8 shows the effect of initial bath height on the height of the free surface at the
wall (ha) when the free surface enters the drainpipe under a drain cover having an
initial angular velocity of 1 rad/s. It can be seen that the initial bath height has no effect
on the height of the free surface at the wall when the free surface enters the drainpipe.
Figure 8(a) shows the free surface when the initial bath height was 20 mm and
Figure 8(b) shows the case of an initial bath height of 40 mm. The shape and location of
the free surface are almost identical, except very small near wall zone seen in
Figure 8(b) where the height of the free surface is slightly lower compared to the case

Effect of drain
cover on

entrapment of air
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shown in Figure 8(a). The drain cover cuts down the effect of initial bath height and
initial angular rotation on the arrival of the free surface at the drainpipe.

Conclusions
A numerical solution of the free surface of water in a cylindrical vessel has been made
by using the finite volume approach with the incorporation of a VOF technique to
predict the free surface. The effect of the drain cover, initial bath height and initial
angular velocity has been studied on the arrival of the free surface at the inlet of the
drainpipe. The following conclusions can be derived from the present numerical
computation.

Figure 7.
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. An increase in the radius of the drain cover helps to drain more fluid without
entrapping air into it.

. The presence of a drain cover eliminates the effect of initial bath height on the
free surface of the liquid when it arrives at the drainpipe in the presence of an
initial angular velocity.

. The presence of a drain cover cuts down the effect of initial disturbances on the
formation of an air core and arrival of the free surface at the inlet of the drainpipe.
The drain cover helps to delay the arrival of the free surface at the drainpipe,
thereby causing more liquid to be drained without the entrapment of air.

Note

1. Comet User Manual, ICCM Institute of Computational Continuum Mechanics GmbH,
Hamburg, Germany (www.iccm.de).
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